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1 Introduction
1-1- Philosophical and historical Introduction

My aim is to present some issues concerning the situation of the Galois theory in the
contemporary mathematical corpus. I want to restrict myself to a preliminary treatment of
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certain questions questions and I would like to propose a few possible approach rather than
some results. Let us consider this scheme. It will help to orient our thinking. I will focus
on the left center column that leads up from Galois to Grothendieck. The main feature of
my paper is to explain the main elements of the mathematical theory but in such a way
that the explanation will be interfaced with a philosophical comment.

At first glance I would say, as Borceux and Janelidze do in their book Galois Theories
(Cambrige University Press 2001)[BJ] : ”Evariste Galois would certainly be surprised to
see how often his name is mentioned in the mathematical books and articles of the twen-
tieth century in topics which are so far from his original works”. I suffices to consider the
scheme.

We generally consider Galois theory as the classical polynomial theory we know and
only during the nineteenth century did the problem of equations of higher degree reached a
final answer: the impossibility of solving by radicals a general equation of degree at least 5,
and some method for finding some solutions by radicals when these exist. [BJ]. The work
by Lagrange, Ruffini, Van der Monde were very important contributions to this problem. I
cannot deal directly with the ”resolvant” of Galois and I will not treat directly the work by
Camille Jordan, Traité des substitutions[CJ]. But we could say that the authentic Galois
theory lies in these topics.

I would like to try to present and to measure the distance between this nineteenth
century theory and Grothendieck theory.

I want to explore what Galois theory’s or Galois theories’ power or strength consists
in. My philosophical thesis would be that Grothendieck is rebuilding Galois theory in
his frame of Category theory and Algebraic Geometry. But this new framework is itself
present in the classical Galois theory. How is it possible? Mathematical concepts or struc-
tures have two essential faces: the face through which they lie inside their own discipline
(geometry, algebra, arithmetic, etc.) the face through which they are linked to other disci-
plines and this at different levels. Taking into account this double face is the main feature
of the Galois theory, The concept which is essential in this view is the concept of Galois
correspondence. It constitues a correspondence (functor) between two algebraic structures
(categories) groups and fields and is the basis of all Galois theories. I will present some
considerations to help us to understand this mathematical fact.

1-2 Remark on method
A strong peculiarity of those developments about solving equations is that the methods

used to reach the final goal proved to be more interesting than the problem to be solved.
Nobody uses the formulae for solving cubic or quartic equations. .. but their considerations
forced the discovery of complex numbers. And the impossibility proof for equation of
higher degree led to specifying the notion of group...[BJ vii]

The phenomenon of the superiority of the methods on the objectives to be reached is a
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very important one. I can give at least two reasons for that.
First the analysis of the target leads to much more deep and complex concepts. It is

the case of a polynomial and, much more striking, the case of the link with symmetric
functions.

Secondly, such an analysis leads to the establishing of more and more links within the
whole mathematical corpus. What is important in such theories (like Galois) is their ability
to mobilize many other mathematical concepts or even other intramathematical theories.
The spirit of the Galois theory is and this at the starting point, to be a not solely intra - but
also intermathematical theory. Even if we remain focussed on the polynomial theory it is
open on the theory of the relations between the roots and on the links between polynomials
and symmetric functions. [Edwards p 9][Stewart , GT p. 87]

Nevertheless, for this reason I am not at second glance convinced that Galois would
be so surprised by the constant mention of this theory. What I will try to remain the
reader is that Galois theory encountered extraordinary, unexpected ( or even unexpectable
) developments, and these developments have been proved necessary. From the point of
view of the History of Mathematics the developments are unforeseeable. [Jean Cavaillès].
But after the new construction has been successful we have to deal with the necessity of
this contingency, which also constitutes the features of Galois theories and their links.
The necessity lies at the level of the conceptual links, obviously not at the level of the
empirical emergence of the new theory. But I would like to suggest that Galois theory
involves through its main theorems the most important so called ”degree of virtuality”.

1-3- Quotation by Grothendieck
Before my analysis, I have to recall some extracts from Récoltes et Semailles:

”· · · Désolé d’avoir l’air de vouloir me singulariser plus qu’il ne paraı̂t per-
mis! A mon propre soulagement je crois pourtant discerner une sorte de frère
potentiel (et providentiel!) J’ai déjà eu tantôt l’occasion de l’évoquer, comme
le premier dans la lignée de mes frères de tempérament, c’est Evariste Galois,
dans sa courte et fulgurante vie, je crois discerner l’amorce d’une grande vi-
sion, celle justement des épousailles du nombre et de la grandeur dans une
vision géométrique nouvelle. J’évoque ailleurs dans Récoltes et Semailles
comment il y a deux ans est apparue en moi cette intuition nouvelle que le
travail mathématique qui à ce moment exerçait sur moi la fascination la plus
puissante j’étais en train de reprendre l’héritage de Galois”. Cette intuition
rarement évoquée depuis, a pourtant eu le temps de mûrir en silence.· · · La fil-
iation la plus directe que je crois reconnaı̂tre à présent avec un mathématicien
du passé, est bien celle qui me relie à Evariste Galois. A tort ou à raison, il
me semble que cette vision que j’ai développée pendant quinze années de ma
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vie, et qui a continué de mûrir en moi et à s’enrichir pendant les seize années
écoulées depuis mon départ de la scène mathématique- que cette vision est
aussi celle que Galois n’aurait pu s’empêcher de développer s’il s’était trouvé
dans les parages à ma place, et sans qu’une mort précoce ne vienne brutale-
ment couper court un magnifique élan”

[Alexandre Grothendieck]Récoltes et semaillesp. 70

After the new theories are elaborated and proved, it becomes necessary to admit that
they are the theories Galois would have from himself developed. And the mathematical
thought has to convince us that this is the case.

2 Classical Galois theory and some Generalizations
In the first part I recall what the classical Galois theory consists in. The elementary con-
cepts of normality and separability are displayed. I will try to give an epistemological
and philosophical comment on the Galois correspondence and explain why its abstract
development was pertinent.

Let K ⊆ L be an algebraic field extension. An element I ∈ L is called algebraic
over K when there exists a non-zero polynomial p(X) ∈ K[X] such that p(I) = 0 The
extension K ⊆ L is called algebraic when all elements of L are algebraic over K

2.1 The main question and its significance
The essential question was to find the roots of a polynomial; but we should also ask what
is the meaning of the search for the roots. This implies the setting up of all possible
links between the indeterminates and the coefficients of the polynomial. There exists
in the ”substance” of a polynomial some power of exploration which is localized in the
relation between the coefficients (that are known) and some symmetrical links between
the roots (or unknown). This trend is originated in the original Galois work and goes from
Newton, Gauss, Lagrange, and Galois’ work on symmetric fonctions and polynomials
until Lagrange’s and Galois ’s resolvent.

I will focus on the field extension. What does exactly this extension mean? It is an
extension of a set of elements provided with the field structure in a greater set, so that
one can dispose roots of a polynomial, roots which were not in the basic field ( the field
where the coefficients take their values). I will explain what the extension consists in, but
the theory of extensions represents a second way the Galois theory is developed, namely
as a theory of the extensions of algebraic structures. These structures are so to say a way
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of getting the conditions to make possible some operations. Theory has to postulate the
existence of such a structure where splitting a polynomial is effective, the splitting field.

2.2 The abstract turn of the Galois theory
In this new trend the attention of the work on the polynomial symmetries becomes sec-
ondary, it even remains a remote background. I remain the reader of the basic theorem
that is a transition from the polynomial Galois theory to the structuralist, abstract Galois
theory. The Dedekindian tradition, which has dominated for the last century formulates
Galois theory in the following way. A group is associated not to an equation f(x) = 0 with
coefficients in K but to a normal extension K ⊆ L, noticed L : K. The group, denoted
Gal[L : K]associated to the normal extension K ⊆ L is all automorphisms of L which
leaves elements of K fixed. Focussing on this idea I can summarize in the following man-
ner. With any polynomial Galois associated a group of permutations of its zeros (group
concept existed only in rudimentary form). But the group that becomes the main concept
is the group of all automorphisms of L for an extension K ⊆ L which fixes the elements
of K. Namely the group we named group of K-automorphisms of L. The concept of
group has been transferred to the set of all K-automorphisms of L. And then if L : K is
an extension K ⊆ L what is important is that to any intermediate extension L : M such
that K ⊆ M ⊆ L one associates the group Gal[M : K] of all M -automorphisms of L.
This is in this direction that I am going to develop my paper.

Theorem [Simple Algebraic Extensions]. Let K be a given field and let G(X) be an
irreducible polynomial with coefficients in K. Then one can construct a field K(t) such
that: (1) K(t) contains K

(2) K(t) contains an element t which is a root of G, that is which satisfies G(t) = 0,
and

(3) every element of K(t) can be expressed as a polynomial in t with coefficients in
K, that is, given any x ∈ K(t) there is an integer ν and an element b0, b1, · · · bν of K such
that x = b0 + b1t+ · · ·+ bνt

ν .
Comment. This theorem explains what the algebricity consists in. Algebraic means

to contain the zeros of a polynomial.

2.3 Galois extension
. We need the extension of a field K on a field L possesses two main features in order to
make possible the concept of the Galois group: separability and normality.

2-3-1 Separable extension Let us recall that the derivative of a polynomial

p(X) = anX
n + an−1X

n−1 + · · ·+ a2X
2 + a1X

1 + a0
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in K[X] is the polynomial

p′(X) = nanX
n−1 + (n− 1)an−1X

n−2 + · · ·+ 2a2X + a1

p′(X) has degree n− 1 if and only if the characteristic of K does not divide n.
Proposition Let K be a field and an element a ∈ K and a polynomial p(X) in K[X].

The following conditions are equivalent
i) a is a multiple root of p(X)
ii) p(a) = 0 and p′(a) = 0

Definition
A field extension K ⊆ L is separable when
(i) the extension is algebraic
(ii) the roots of the minimal polynomial of every l ∈ L are all simple.
Comment. The simplicity is a condition of splitting for the polynomial. And correl-

atively it corresponds to the algebraic construction of the extension. I recall, like [BJ p.
5]

Proposition LetK ⊆ L be a field extension in characteristic zero. IfL ∈ L is algebraic
over K, all roots of the minimal polynomial of l over K are simple.

Corollary In characteristic zero all algebraic extensions are separable
Proposition Let K ⊆M ⊆ L be field extensions. If K ⊆ L is separable then M ⊆ L

is separable as well.
[ comment] What is remarkable is the fact that the property of separability carries over

intermediate fields. It prepares the game for the Galois correspondence.
2-3-2 Normal extension
Definition
A field extension K ⊆ L is normal when
(i) the extension is algebraic
(ii) for every element l ∈ L the minimal polynomial of l over K factors entirely in

L[X] in polynomial of degree 1.
An algebraic field extension K ⊆ L with L algebraically closed is necessarily normal.

3 Abstract field extension

Remark. Inseparability
Let K be a field of characteristic p > 0, the map φK → K defined by φ(k) = kp with

(k ∈ K) is the Frobenius monomorphism or Frobenius map of K.
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When K is finite, φ is called the Frobenius automorphism of K. We use the Frobenius
map to give an example of an inseparable polynomial. Let K0 = Zp, for prime p. Let
K = K0(u) where uis transcendental over K0 and let

f(t) = tp − u ∈ K[t]

Let Σ be a splitting field for f overK, and let τ be a zero of f in Σ.Then τ p = u. according
to the Frobenius map we get

(t− τ)p = tp − τ p = tp − u = f(t)

Thus if σp − u = 0 then (σ − u)p = 0, so that σ = τ .
All the zeros of f in Σ are equal. (According Jan Stewart [GT p. 184]).
Let us show that f is irreducible over K. Suppose that f = gh, g, h,∈ K[t] and g

has lower degree than f . We must have g(t) = (t − τ)s, 0 < s < p by uniqueness of
factorization. Hence the constant coefficient τ s of g lies in K.This [J Stewart] GT ibid.]
implies that τ ∈ K for there is integer a and b such that as + bp = 1 and τas+bp ∈ K it
follows that τ ∈ K. Then τ = v(u)/w(u), v, w ∈ K[u]. Then

v(u)p − u(w(u))p = 0

The terms of highest degree cannot cancel. Hence f is irreducible.
Comment on the irreducibility. Considering this case it becomes clear why we need

to specify the separability. Why such a case can exist in the case of finite characteristic?
There exists a condition on f for inseparability over fields of characteristic p. Only powers
of t that are multiples of p occur.

I would claim that the simplicity of roots makes possible the construction of the Galois
group, as permutation group of the roots.

4 Classical Galois theory the point of view of morphisms
Definition Let K ⊆ L be an algebraic field extension. A field homomorphism f : L→ L
is called a K-homomorphism when it fixes all elements of K, that is, f(k) = k for every
element k ∈ K.

Comment . The starting point of the theory consists in considering automorphism of
field modulo points in the basic field that are fixed by this morphism. The fixed point of
the start are points lying in a basic field so that we get automorphisms of L modulo fixed
points that are elements of a subfield of the field L. When one has in mind the polynomial,
the coefficients that are in the basic field are fixed, and the roots are moved.

8



I would like to develop this remark. The difference between the fixed elements and the
moved ones is important. The permutations allow us to distinguish the block of roots. It is
another kind of invariance, they are identified modulo this permutation group.

Consider any quartic with the roots α, β, γ, δ. consider three subfields of C related to
α, β, γ, δ, namely

K ⊆ K(γ, δ) ⊆ K(α, β, γ, δ)

Let H = {I, R} ⊆ G. Stewart asks to assume that we also know :
1- The numbers fixed by H are precisely those in K(γ, δ).
2- The numbers fixed by G are precisely those belonging to K.
In this way we can work out how to solve the quartic equation g(t) = 0. We know (it is

presupposed) that the numbers α+ β, α · β are fixed by H .These numbers are coefficients
of the quadratic equation:

(t− α)(t− β) = t2 − (α + β)t+ α · β,

and according 1 they lie in K(γ, δ). Then α, β satisfy this quadratic equation whose coef-
ficients are in K(γ, δ). It becomes possible to express α, β in terms of rational functions
of γ, δ, and to obtain α, β as radical expressions in γ and δ. It is matter to be noticed that
H fixes the elements of the subfield in which the coefficients of the polynomial lie and that
these coefficients are rational functions of the roots that are to be found. If we are repeat-
ing the same analysis to find γ and δ, the numbers γ+ δ and γ · δ are fixed by the whole G.
I recall thatR interchanges α and β, and I notice S the subgroup that interchanges γ and δ.
Then γ+ δ and γ · δ are fixed by the whole G and then are fixed by R and by S. And these
numbers belong to K, Stewart takes Q as basic field. The Galois subgroup fixed the field
which contains the coefficients of the polynomial g(t) and interchanges the roots lying in
the immediate extension. Here γ and δ satisfyng a quadratic equation over K = Q so they
are given by radical expressions in rational numbers.

Comment The subgroup structure of the Galois group is related to the possibility of
solving the equation g(t) = 0. This specific structure, group fixing the coefficients of the
polynomial and a then a rational function of the roots and at the same time interchanging
these roots was discovered by Galois. He understood the link between rational function of
the roots and group fixing or not the roots on which it acts.

4.1 The abstract setting (J Stewart)[GT . 90]
The abstract modern approach follows Galois in principle ( the symmetries of the poly-
nomial are in the background) it differs in practice, says Stewart, [Stewart] in theory also.
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The permutations of α, β, γ, δ that preserve the algebraic relations between them are actu-
ally the symmetry group of the subfield K(α, β, γ, δ) of C generated by the zeros of g, or
more precisely its automorphism group.

Comment. There is a change of point of view: we consider the polynomials not just
with integer or rational coefficients, but coefficients that lie in a subfield K of C ( or
Stewart says, any field). The zeros of a polynomial f(t) with coefficients that lie in K
determines another field L which contains K but may well be larger.

Thus the primary object of consideration is a pair of fields K ⊂ L or in a slight gener-
alization, a field extension of L. When Galois talks of polynomial, the modern approach
talks of field extension. And the Galois group of the polynomial becomes the group of K-
automorphisms of L. Thus, John says, the bulk of the theory is described in terms of fields
extensions and their groups of K-automorphisms. This point of view was introduced by
Dedekind in 1894, when presented subring and subfield of C in an axiomatic way. And
then the roots of a polynomial are viewed as the support of morphisms that permute them.
A field extension is also viewed as a monomorphism.

4.2 The point of view of morphisms to be continued
Let us introduce some notations and constructions.

Let K ⊆ L be a Galois field extension.
Given an intermediate field extension K ⊆ M ⊆ L we consider the Galois group

Gal[L : M ] = AutML of those automorphisms of L which fix M .
Given a subgroup G ⊆ Gal[L : K], we write

Fix(G) = {l ∈ L|∀g ∈ G g(l) = l}

Fix(G) is a subfield of L since each g ∈ G is a field automorphism, and it contains K
since each g ∈ G is a K-automorphism K ⊆ Fix(G) ⊆ L.

Remark I will present some features of the concept of functor.
1- Category. I recall: a category has objects, A,B,C, · · · , and arrows, f, g, h, · · · , To

say that g goes from A to B we write g : A → B, or say that A is thedomain of g, and B
the codomain. We may write Dom(g) = A and Cod(g) = B. Two arrows f and g with
Dom(f) = Cod(g) are called composable then we must have a composite, and an arrow
called f ◦ g

2- Functor. A functor F from a category A to a category B, written F : A → B
assigns to each object A of A an object FA of B and to each arrow f of A an arrow Ff
of B meeting the following conditions.

It preserves domains and codomains: given f : A→ B we have Ff : FA→ FB.
It preserves identities: for any A of A, F(1A) = 1FA
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It preserves composition : if f and g are composable in A then F(g ◦ f) = Fg ◦ Ff
where the second composite is formed in B.

3- Adjoint functor. Let C,D be two categories and F : C → D and G : D → C be
two functors. The functor F is left adjoint of G that is right adjoint of F, if for all object
X of C and for all object Y of D, we have a functorial bijection

HomD(FX, Y )→ HomC(X,GY )

Let (X,≤X)(Y,≤Y )be two preordered sets, CX , CY the canonically associated cate-
gories and F : CX → CY and G : CY → CX be two functors. Suppose that F is left
adjoint of G. Since each set of morphisms in CX or CY is reduced to an element or is
empty the bijection of adjunction is given by :

(F (x) ≤ y) ↔ (x ≤ G(y)). Let us consider successively x = G(y) and y = F (x),
we get

(G(y) ≤ G(y)) =⇒ (F (G(y) ≤ y)
(F (x) ≤ F (x)) =⇒ (x ≤ G(F (x))
Comment. The Galois connection (correspondence) on the pre orders is ”naturally”

extended in an adjunction. Viewing groups and fields as categories and f and g resp. as
functors F and G, we get the usual definition of two adjoint functors. Indeed viewing f
and g as covariant functors between X and the dual of Y we get for Galois connexion f
as left adjoint to g. The Galois connection is functorial. What it means? Galois could
not use category terminology and even connexion (correspondence). Nevertheless this
terminology respects the main feature of the theory: connexion between Galois subgroups
and field Galois extension, reversion of order of inclusion between groups and fields.

This double relation, namely connexion and reversion of inclusions is the main expres-
sion of the Galois theory from the point of view of its form. The greater a first extension of
the algebraic structure (field), the smaller the second extension of the algebraic structure
(group) that controls the first extension. And it turns out that the structure that expresses
this situation is a contravariant functor.

In this sense we have the following theorem.
Proposition Let K ⊆ L be a Galois field extension . The map

K ⊆M ⊆ L
Gal
$$

Fixee {G|G ⊆ Gal[L : M ]} constitute a Galois connection. IndeedGal
and Fix are contravariant functors between posets so the announced adjunction property
reduces to the trivial relations [BJ]

Fix(Gal(M)) = M ⊆ Fix(Gal[L : M ]), G ⊆ Gal(Fix(G))

Comment. We should notice the way to get fixed fields from Galois groups and Galois
groups from fixed field. That means that all field extension is related to a control by a
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subgroup. The extension implies the group action, i.e. automorphisms of the elements of
the extension and the fixation of the elements of the basic field by the same subgroup. This
double action of this Galois group (identity on the basic field, permutation on the extended
elements) expresses the form of the extension. The reverse of the inclusions, extension
towers in one side, subgroups inclusion in the other side is another meaning of the theory:
the more you extend the (field) structure to get the roots of the polynomial the less you
need a (group) control structure because the roots are more and more distinct. In order to
complete the significance of these extensions let us consider the following theorem.

Galois theorem. Let K ⊆ L be a finite dimensional Galois extension of fields. In
this case, the adjunction is a contravariant isomorphism. Moreover, for every intermediate
field extension K ⊆M ⊆ L

dim[L : M ] = #Gal[L : M ]

The equality of the cardinalities is a way to complete the significance of the correspon-
dence. Let us consider the dimension of the field extension (or of the vector space of the
extended field over the basic field) that is a passive dimension and on the other hand the
dimension (order) of the Galois group is active, it yields the automorphisms.

5 Galois theory of Grothendieck
[BJ p. 15] presents Grothendieck theory in its spirit not in its generality, which figures in
the context of schemes. The generalization comes through steps : it needs the concept of
algebra, split algebra and is able to explain a general form of Galois equivalence.

5.1 Algebra on a field
An algebra A on a field K is a vector space on K provided with a multiplication that
makes it into a ring that satisfies k(aa′) = (ka)a′, for all a, a′ in A. The idea is to exploit
this new structure of algebra in order to extend the results of the field frame to this new
frame. Particularly one uses this supplementary ring structure on A. It is necessary to set
the relations between the structures of algebra and of field. I recall some propositions, [BJ]
found. The interesting example of K- algebra for us is the ring K[X] of polynomials with
coefficients in K.

Comment. Algebra gives a better vision of the decomposed polynomial, it gives a way
to enlarge a polynomial structure independently of unknowns. To replace field extensions
over fields by the commutative algebra over fields is an important generalization. It makes
possible a supplementary operation of multiplication. After a ”vertical” extension it yields
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in a certain sense a ”horizontal” extension. When one reach a high plateau one has to
extend it farther.

Proposition
Let K be a field and A a K- algebra. The following conditions are equivalent:
(i)A is a field
(ii) A has only trivial ideals
Proposition
Let K be a field. Every ideal of the K- algebra K[X] is principal.
Proposition
Let K be a field and p(X) be a polynomial. Then the following conditions are equiva-

lent.
(i)the polynomial p(X) is irreducible
(ii) the ideal p(X) generated by p(X) is maximal
(iii) the K- algebra K[X]/p(X) is a field
Comment. It is important to get all operations that were possible by means of the

concept of field, by means of algebra. Particularly when the relations between irreducible
polynomial and maximal ideal and quotient that is in this case a field. The concept of
irreducible polynomial makes possible the passage from the ”polynomial point of view”
to ”the structural view” of the Galois theory” because the quotient by the irreducible poly-
nomial is a field isomorphic to the extended basic field.

In order to emphasize the relation between the irreducible polynomial and the quotient
by this polynomial from one side and the K-algebra K[X]/〈p(X)〉 from the other side
let us consider the implication from (iii) to (i). Let p(X) = s(X).r(X) be a factorization
of p(X). It follows that 〈p(X)〉 ⊆ 〈s(X)〉 from which 〈s(X)〉/〈p(X)〉 is an ideal of
K[X]/〈s(X)〉.

By the properties of a field this ideal is zero or the whole field. If it is (0) then
〈s(X)〉/ = 〈p(X)〉 and p(X) divides s(X) thus r(X) is a constant. If this ideal is
K[X]/p(X) then the constant polynomial 1 is in s(X) up to a polynomial in 〈p(X)〉,
that is (BJ)

1 = u(X) · s(X) + v(X)· (X) = s(X) · (u(X) + v(X) · r(X))

Thus s(X) is a constant.
Comment. The quotient by the irreducible polynomial is a field and in this way we

focus on the structure of field.It is interesting to notice that the irreducibility is translated
in the fact that this quotient has only two ideals, the trivial one and the whole field.
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5.2 An algebra on a field and the generalization of algebricity prop-
erties on a field

Let K be a field and A a K-algebra. An element a ∈ A is algebraic when there exists a
polynomial p(X) ∈ K[X] with p(a) = 0. The K algebra A itself is called ”algebraic”
when all its elements are algebraic. Comment. It is worth stressing that the polynomial
structure becomes an element of a field structure.

Proposition
Let K be a field, A a K-algebra and 0 6= a ∈ A an algebraic element with minimal

polynomial p(X) of degree n. TheK -subalgebraK(a) ⊆ A generated by a is isomorphic
to

K(a) ∼=
K[X]

〈p(X)〉
∼= {k0 + k1X + · · ·+ kn−1X

n−1|ki ∈ K},

where in the last expression the operations are defined modulo p(X).
Comment. I would like to comment on this isomorphism. When one write the expres-

sion of the quotient we can observe the structure of the polynomial expression as such.
This structure is worked to become a form that concentrates other kinds of structure: vec-
tor space, ideal (maximal and prime), field and algebra. In this last proposition we have
to deal with the algebra structure. The sub-algebra K(a) is worked in such a way that
it will be considered a set of polynomials modulo the minimal polynomial p(X). This
polynomial controls the set of polynomials that constitutes the sub-algebra.

I have to add that the introduction of the structure of algebra allows to dispose of larger
structure. I called it a ”horizontal” extension. We get the multiplicative structure of the
algebra. The initial vector space gained by means of this concept a new frame for the
Galois theory: particularly the ring K[X] with coefficient in K is a K- algebra, from
which we get the set of polynomial functions. It is easy to remark that we have here a kind
of abstraction: in a larger frame introducing the possibility of an elementary operation :
the multiplication as we said above and this operation has many outcomes .

6-2-1-Properties of K-algebra in relation with a field extension k ⊆ L
Proposition
Let K ⊆ L be a field extension. Every L-algebra B is trivially a K-algebra, by

restriction of the scalar multiplication to the elements of K. On the other hand every
K -algebra A yields an L - algebra L

⊗
K A where the multiplication of this algebra is

determined by

(l ⊗ a)(l′ ⊗ a′) = (ll′)(aa′)

and the scalar multiplication by

l(l′ ⊗ a) = (ll′)⊗ a)
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l, l′ ∈ L, a, a′ ∈ A
Comment. In the spirit of Grothendieck, [BJ] introduces the tensor product in order

to extend the K- algebra to the L -algebra. By means of the tensor product one yield
an specific extension: the extension of the algebra and of scalars of the algebra. Let
us consider the role played by the tensor product. It allows us to extend the structure
of algebra because it yields the multiplication and the multiplication of scalars. Both
multiplications are given by the properties of the relation between the product and the
tensor product. We have got the extension by the algebra ad the extension of algebra.

Remark. It is possible to iterate these different extensions like in the case of the field
extensions. Algebra structure captures a part of field structure and field extension and for
this reason it can be extended in the same manner.

By this theorem it is possible to cross another step in the road to categorical general-
ization of the theory. Indeed these constructions extend to functors,

L− Alg −→ K − Alg, B 7→ B, K − Alg −→ L− Alg,

A 7→ L
⊗
K

A

the second functor is left adjoint to the first one. For the proof we need simply to exhibit a
natural isomorphism

HomL(L
⊗
K

A,B) ∼= HomK(A,B)

Comment. It is worth noticing that the restriction of scalars and the extension of this
one can extend to functors. It is the specific Grothendieck’s Abstraction. First the exten-
sion of scalars by the tensor product and secondly in a quasi natural way, the functorial
translation. It supposes that the algebras are viewed as categories. What is the benefit of
this translation? It makes possible the presentation of the extension ”as such”. It is the
particularity of the functorial (categorical) translation: we get a level of abstraction where
the extension can be worked as the basic element. That means that the structuralist view of
the extension is a goal of Grothendieck’s theory. But inversely the extension seems to be a
deep way to consider a motor of the Galois theory. The step of generalization that replaces
the field extension by the commutative algebra over fields is very effective. I recall the
equivalences [BJ p. 305] gives: For a finite dimensional commutative algebra A over a
field the following conditions are equivalent:

(i)A is a finite product of separable field extensions
(ii) L

⊗
K A has no nilpotent elements for any field extension L of K

(iii) The L-algebra L
⊗

K is of the form L× · · ·L for any extension L of K
(iv) A is projective as an (A

⊗
K A)-module
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Two propositions [BJ] p.21
Proposition 1:
LetK ⊆ L be a field extension andA be aK-algebra. Then the following isomorphism

holds:
HomK(A,L) ∼= HomL(L

⊗
K

A,L)

Proposition 2:
Let K ⊆ L be a field extension and p(X) ∈ K[X] a polynomial. Then the following

isomorphism holds

L
⊗
K

K[X]

〈p(X)〉
∼=

L[X]

〈p(X)〉

On the right side the polynomial is viewed as a polynomial with coefficients in L.
Comment. The first proposition is a corollary of the previous one. It means that in the

case of an field extension and any algebra A we get the above isomorphism. The comment
has to be about the change from the extended object to the morphisms. It is the spirit of
the Galois theory that is translated in the Grothendieck’s view. This view results from the
concept of abstraction that Grothendieck promotes. The extension is developed through a
conception in terms of morphisms.

The second proposition presents a kind of contraction of the ”tensored” field extension,
in order to give another analysis of the quotient by the minimal polynomial.

I would like to give a last theorem before the passage to the concept of split algebra.
This theorem is a synthesis of the previous results in terms of morphisms.

Proposition
Let K ⊆ L be a field extension and p(X) ∈ K[X] a polynomial. Then there exists a

bijection between
(i) The roots of p(X) in L
(ii) the homomorphisms of K-algebras K[X]

〈p(X)〉 −→ L
Comment. This bijection represents the passage from the roots of the minimal poly-

nomial to the set of the elements of the quotient of the K - algebra K[X] by the minimal
polynomial to the field L. In this way the roots of a polynomial are viewed as morphisms
into the field which contains these roots. And the domain of these morphisms is given
through the quotient by the polynomial. It is easy to underline the role played by the poly-
nomial. It structures the extensions that are considered as morphims. It is well known that
this concept lies at the center of Grothendieck’s thought. But Grothendieck is working in
such a way that morphisms appear in all objects or structures he treats.

6-2-2- Split algebras
A Galois extension of fields is an algebraic field extension such that the minimal poly-

nomial p(X) ∈ K[X] of each element l ∈ L factors in L[X] into factors of degree 1 with
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distinct roots. The notion of Split algebra is constructed to capture these properties of
Galois extension, through the concept of algebra.

Let us posit the following definition :
Let K ⊆ L be a field extension and A a K-algebra. The extension L splits the K-

algebra A when (i) the algebra A is algebraic over K
(ii) the minimal polynomial p(X) ∈ K[X] of every element of A factors in L[X] into

factors of degree 1 with distinct roots.
The K-algebra A is an étale algebra when it is split by the algebraic closure of K.
Comment. The Split algebra is a new structure (and a category) corresponding to the

structure of splitting field, transferred to the case of algebras. This reformulation proposes
a new theoretic extension of the Galois situation. We can pose the same question : what
advantage does the concept of algebra procure? A split algebra extends the factoring of
the polynomial to the structure of algebra : the concept of algebra yields a more precise
visibility on the factoring of the polynomial. The Galois theory is formulated through
a specific issue : yielding the largest structure for the linear factoring of the minimal
polynomial. The target of Grothendieck in this construction was to give the polynomial
factoring an algebraic structural status.

I want to explain the theorem I consider the most important in this step of the theory
[BJ] p. 24. Theorem

Let K ⊆ L be a field extension of finite dimension m and A a K-algebra of finite
dimension n. Then the following conditions are equivalent:

(i) the extension L splits the L-algebra A
(ii) the following map called the Gelfand transformation is an isomorphism of K-

algebra

Gel : L
⊗
K

A→ LHomL(L
⊗
K A,L);

l
⊗

a→ (f(l
⊗

a)) where f ∈ HomL(L
⊗

K A,L)
(iii) the following map is an isomorphism of L-algebras:

L
⊗
K

A→ LHomK(A,L)

l
⊗

a→ (l(g(a)); where g ∈ HomK(A,L)
(iv)]HomL(L

⊗
K A,L) = n

(v) ]HomK(A,L) = n
(vi) L

⊗
K A is isomorphic to Ln as an L-algebra

(vii)∀x ∈ L
⊗

K A, x 6= 0,∃f ∈ HomL(L
⊗

K A,L) such that f(x) 6= 0
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There are simple proofs of these different equivalences. I would like to begin with a
comment on (iv) and then explain the idea of Gelfand transformation.

Comment. This proposition provides a sort of translation reformulation of the struc-
tural situation of Galois theory into the terms of Grothendieck’s interpretation of this the-
ory. The starting point is the tensor product ; it makes an A- algebra K into a L-algebra.
It is a way to preserve the algebra structure through its extension.

This tensor product is related to the set of maps (morphisms) from the tensor product
in the basic field into this basic field. We deal here with a kind of a twofold duality.

I will comment the following lemma that concerns (i) and (ii).
lemma
L splits the K -algebra A if and only if its Gelfand transformation is an isomorphism.

That is condition (i) and (ii) of the theorem are equivalent.
Comment This lemma means that the isomorphism of Gelfand transformation is re-

lated specially to the fact that the extension L splits the K-algebra A. From the point
of view of the Gelfand transformation the isomorphism means that the tensor product
L
⊗

K A corresponds to a ”decomposition” in maps from morphisms HomL(L
⊗

K A,L)

toL. We can use the correspondence between the roots of polynomial p(X) andHomK( K[X]
〈p(X)〉 , L).

The Gelfand transformation yields a larger frame to interpret the splitting in terms of maps.
The spirit of this analyzis consists in the explication of the goal Grothendieck aims at. Re-
formulate the objects, here roots of polynomial, in terms of morphisms the field extension
becomes in this way, first of all, the development of possible morphisms.

Remark on the proof of the lemma. It uses all previous equivalences. Particularly the
fact that n distinct roots for the minimal polynomia of a ∈ AK-algebra, p(X) ∈ K[X] of
degree n means that ]HomK(K(a), L) = n.

III - The Galois equivalence. This theorem ( Galois theorem according [BJ] p. 28)
concludes the translation of the Galois theory inside the frame of Grothendieck theory. It
is important to emphasize that it is expressed in the category language and in the structure
of the algebra and G -set. I recall that given a group G whose composition law is writtent
multiplicatively, a left G-set is a set X provided with a left action of G, : G × X →
X, (g, x)→ gx

1x = x, g(g′x) = (gg′)x
A morphism f : X → Y of left G-sets respects the action of G, that is,

f(gx) = g(fx).

Galois theorem. Let K ⊆ L be a finite dimensional Galois extension of fields. Let
us write Gal[L : K] for the group of K-automorphims of L and Gal[L : K] − Setf for
the category of finite Gal[L : K] − sets. Let us also write SplitK(L)f for the category
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of those finite dimensional K-algebras which are split by L. The functor on SplitK(L)f
represented by L factors through the category Gal[L : K]− Setf :

HomK(−, L) : SplitK(L)f −→ Gal[L : K]− Setf

A −→ HomK(A,L)

with Gal[L : K] acting by composition on HomK(−, L). This factorization functor is a
contravariant equivalence of categories.

Comment I shall explain the meaning of this theorem. First, it is a reformulation of
Galois theorem. Let us consider the factorization functor. It relates the category SplitK(L)
to the categoryGal[L : K]−Setf . It is a meaning of the Galois theorem. The link between
the category where there exists a factorization into linear factors and the category where
the Galois group acting by composition on the functor that represents SplitK(L) is an
extension reformulation of the Galois theorem: from one side ( like a memory of the field
extension) the category SplitK(L) from the other side, the acting Galois group. But this
link is enriched. Second, I would say that this reformulation is a dynamical one: Split
-Algebra focusses on the splitting and Galois -group on the acting of the group. And both
dynamics are related to each other. Let us look back to the equivalence of categories.
By the comment of the lemmas [BJ] uses I will explain what this means. First the proof
expresses what the action of Gal[L : K] consists in. It is given by

Gal[L : K]×HomK(A,L) −→ HomK(A,L), (g, f) 7→ g ◦ f

The Galois group contributes in this way to give the representation of Split a meaning.
And it is the primary significance of the Galois group. The proof splits in five lemmas.
Both first prepare the proof of the equivalence of categories.

Lemma 1 For every algebra A ∈ SplitK(L)f we get a structure of a Gal[L : K]−set
on L

⊗
K A by putting

Gal[L : K]× (L
⊗
K

A) −→ L
⊗
K

A, (g, l ⊗ a)→ g(l)⊗ a

Via the Gelfand isomorphism this action becomes :

Gal[L : K]× LHomK(A,L) → LHomK(A,L),

(g, φ)→ [f → g(φ(g−1 ◦ f))]

where φ : HomK(A,L)→ L and f ∈ HomK(A,L) I give the whole proof from [BJ].
Let us fix an element g ∈ Gal[L : K] and consider the morphism
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γ : LHomK(A,L) −→ LHomK(A,L), (γ(φ))(f) = g(φ(g−1 ◦ f))

((γ ◦Gel)(l ⊗ a))(f) = (γ(Gel(l ⊗ a)))(f)

= (g(Gel(l ⊗ a)g−1 ◦ f))

= g(l(g−1 ◦ f)(a)))

= g(l(g−1(f(a)))

= g(l)gg−1(f(a))

= g(l)(f(a))

= Gel(g ⊗ id)(l ⊗ a)(f)

= ((Gel ◦ (g ⊗ id))(l ⊗ a)(f).

Let us consider the role played by the Gelfand isomorphism. It makes possible the resort
to set of morphisms and then the action of the Galois group, that is the apparition of the
composition. We also need the commutativity of the diagram.
L
⊗

K A
Gel
∼=
//

g⊗id
��

	

LHomK(A,L)

γ

��
L
⊗

K A
∼=
Gel
// LHomK(A,L)

This expresses the equivalence between both formulations of the statement. We have
got the structure of Gal[L : K]− set on L

⊗
K A, and the isomorphism of Gelfand trans-

formation expresses the ”extension” of this structure.
Lemma 2
For every algebra A ∈ SplitK(L)f one has

A ∼= FixGal[L:K](L
⊗
K

A) =

= {x ∈ L
⊗
K

A|∀g ∈ Gal[L : K](g ⊗ id)(x) = x}

In this lemma we come back to the classical Galois theorem. All object (algebra) of
the category SplitK(L) corresponds to objects of L

⊗
K A fixed by the group Gal[L : K].

And then it is possible to prove the Galois equivalence.
Lemma 3. The functor described above is full.
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The proof [BJ p. 31] proposes is a little technical. He fixes two K -algebras A and B
in SplitK(L) and a morphism of Gal[L : K]-sets

φ : HomK(B,L)→ HomK(B,L)

that becomes via Gelfand

Lφ : LHomA,L → LHomK(B,L)

and using the previous lemma and the Gelfand isomorphism he constructs the follow-
ing situation:

A
∼=−→ FixGal[L:K](L⊗K A)

∼=−→ FixGal[L:K](L
HomK(A,L))

Lφ ↓

B
∼=←− FixGal[L:K](L⊗K B)

∼=←− FixGal[L:K](L
HomK(B,L))

Let ψ : A → B be this composite. The fullness of the functor amounts to φ =
HomK(ψ,L)

L
⊗

K B
GelB
∼=
//

pB

��

LHomK(B,L)

ph
��

B
h

// L

ph is the projection of index h. Let iB where iB(b) = 1⊗ b be the inverse image of pB.
One get, [BJ] a second commutative diagram, indeed :

(ph ◦GelB ◦ iB)(b) = (ph ◦GelB)(1⊗ b) = ph(h
′(b)h′∈HomK(B,L)) = h(b)

We need the following commutative diagram:

A
iA//

ψ

��

L
⊗

K A
GelA
∼=
//

φ̄

��
	

LHomK(A,L)

Lφ

��
B

iB
// L
⊗

K A
∼=

GelB
// LHomK(A,L)

φ̄ is the morphism corresponding to Lφ by the Gelfand isomorphim and it ensures the
commutativity of the diagram. In this way we get the end of the proof.

HomK(ψ,L)(h) = h ◦ ψ
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= ph ◦GelB ◦ iB ◦ ψ

= ph ◦GelB ◦ φ̄ ◦ iA
= ph ◦ Lφ ◦GelA ◦ iA
= pφ(h) ◦GelA ◦ iA
= φ(h)

Comment The fullness describes a property of the functorHomK(−L), thus expresses
the fact that the Galois equivalence, in terms of categories, allows us to find for all mor-
phisms of Gal[L : K] − sets, namely all morphisms between the images of the functor
of objects of the category SplitK(L) the corresponding morphism of the images by this
functor. This property of the equivalence of categories (fullness) ensures that as soon as
one get a morphism between G-sets and thus group actions it comes from morphism be-
tween objects of K-algebras that split. It is an element of a reformulation of the Galois
correspondence.

Lemma 4
The functor is faithful. Let us consider a second morphism ψ′ : A → B such that

HomK(ψ′, L) = φ. One should prove that it implies that ψ′ = ψ It is clear that, (BJ), for
every h ∈ HomK(B,L)

ph ◦GelB ◦ iB ◦ ψ′ = h ◦ ψ′

= φ(h)

= pφ(h) ◦GelA ◦ iA
= ph ◦ Lφ ◦GelA ◦ iA
= ph ◦GelB ◦ iB ◦ ψ

by using the previous diagram. Since this relation holds for all projection ph and since both
GelB and iB are injective we get ψ′ = ψ. This injectivity, as element of the equivalence
makes more precise the categorical Galois equivalence.

Comment Fulness and faithfulness are a specific reformulation of Galois correspon-
dence. It expresses the conceptual virtualities of the Galois extensions. By means of the
categorical reformulation we get a dynamical unity of the elements of the correspondence
that are also dynamical elements .

The last property we have to show is the essential surjectivity on the objects.
Lemma 5
The functor is essentially surjective on the objects.
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That means that every quotient of the Gal[L : K]-set Gal[L : K] has to be isomorphic
to an object of the form HomK(A,L) for some A ∈ SplitK(L)f . All object of the im-
age category has to be isomorphic to an object of the form HomK(A,L). This property
completes the dynamics of the correspondence. The image category Gal[L : K]−Setf is
covered by the image of the functor. Let us consider the proof.

Let H be a subgroup H ⊆ Gal[L : K] and the corresponding Gal[L : K]-quotient-set
Gal[L : K]/H A previous proposition showed that there exists a bijection between the
subgroups of G and the quotient of the G-set G. It has to be proved that

Gal[L : K]

H
∼= HomK(Fix(H), L).

By the inclusion Fix(H) ⊆ L we get by functoriality a morphism (BJ) ρ

Gal[L : K] ∼= HomK(L,L)→ HomK(Fix(H), L),

sending f : L→ L to its restriction f| : (Fix(H)→ L

K // // Fix(H)

��

// // L

��
K // // L L

We know that it is possible to extend f| to f . Every morphism ofK-algebra Fix(H)→
L is the restriction of a morphism L → L. The main argument consist in the explicit
construction of the extension in such a way to obtain the extension of the initial morphism.
Thus the map ρ is a quotient map.

It remains to prove that HomK(Fix(H), L) is the quotient Gal[L:K]
H

. To this goal it
suffices to show that f, g L //// L have the same restrictions to Fix(H) if and only if
f−1 ◦ g ∈ H . f|Fix(H) = g|Fix(H) means that f ◦ g−1 fixes the points of Fix(H). That
means that

f−1 ◦ g ∈ Gal[L : Fix(H)] = H

It is (BJ) the classical Galois theorem that yields this equality. The sub group of the Galois
group of Fix(H) -automorphims of L, i. e. that fix the elements of Fix(H) fixed by H is
H .

On the other hand every finite Gal[L : K]-set is a finite disjoint union of quotient of
of Gal[L : K]. To conclude, (BJ) appeals to arguments of category theory. I recall the
lemma that [BJ p. 25.] uses.

Lemma
The class of those K-algebra satisfying the equivalent conditions (ii) to (vii) is stable

under subobjects, quotients, finite products, and tensor products.
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And since L splits the K - algebra A if and only if its Gelfand transformation is an
isomorphism, the category SplitKLf has finite products. It suffices to prove that the con-
travariant functor HomK(−L) transforms finite products into finite sums. That is what
[BJ] proves using the sequel
A A×Boooo // // B

This concludes the proof of the lemma and then of the theorem of the Galois equiva-
lence.

6 Some analysis about the (classical) Grothendieck Ga-
lois theory

There exists other way to generalize Galois theory. One of these consists in treating arbi-
trary extensions.

First, to what (BJ) calls a ”finite dimensional Galois subextension”, namely the inter-
mediate field extensions K ⊆M ⊆ L, with K ⊆M a finite dimensional Galois extension
of fields.

In this generalization we will have to deal with topology intervention.
Particularly we have the proposition
Proposition
Let K ⊆ L be a Galois extension of fields. The field L is the set-theoretical filtered

union of the subextensions K ⊆ M ⊆ L where K ⊆ M is a finite dimensional Galois
extension.

Comment In this generalization we have to deal with the subextension as such, that
means with the relation between the subextensions. And when the subextensions are arbi-
trary the Galois group will be a topological group. This group will turn out to be discrete
when the extension is finite dimensional.

I would like set out two propositions without proof in order to describe the topological
point of view.

[BJ p.39]
Let K ⊆ L be a Galois extension of fields. in the category of groups:

Gal[L : K] = limMGal[L : K]

when M runs through the poset of finite dimensional Galois extensions K ⊆ M ⊆ L and
for M ⊆M ′, the corresponding morphism

Gal[M ′ : K]→ Gal[M : K], f → f|
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is the restriction.
It suffices to prove that the projections pM : Gal[L : K] → Gal[M : K] form a cone,

and that this cone is a limit one.
It yields the topological group.
[BJ p. 40] can give the following definition.
Definition
Let K ⊆ L be a Galois field extension. The topological Galois group of this extension

is the group Gal[L : K] provided with the initial topology for all the projections

Gal[L : K] ∼= limMGal[M : K]→ Gal[M : K], f → f|M

where M runs through the finite dimensional Galois subextensions K ⊆M ⊆ L and each
Gal[L : M ] is provided with the discrete topology. All the groups Gal[M : K] are finite.
The diagram constituted by these Gal[M : K] is cofiltred. The topological Galois group
is thus (BJ) a cofiltred projective limit, in the category of topological groups, of a diagram
constituted of discrete finite groups: such a group is called a profinite group.

Before going to a commentary on this topological generalization I would like to explain
some properties of this topology.

Lemma 1
Let K ⊆ L be a Galois field extension. The subgroups Gal[L : M ] ⊂ Gal[L : K] for

K ⊆ M ⊆ L a finite dimensional Galois subextension, constitute a fundamental system
of open and closed neighbourhoods of idL.

Lemma 2
Let K ⊆ L be a Galois extension of fields. The topology of the Galois group Gal[L :

K] is the initial topology for all the maps

evl : Gal[L : K]→ L, f 7→ f(l)

where l runs through L and the codomain L of evl is provided with the discrete topol-
ogy. This topology is also called the topology of pointwise convergence on Gal[L : K]

And then we have the corollary
Corollary Let K ⊆ L be a Galois extension of fields. For every f ∈ Gal[L : K], the

subsets

VM(f) = {g ∈ Gal[L : K]|g|M = f|M} ⊆ Gal[L : M ]

for K ⊆M ⊆ L running through the arbitrary finite dimensional subextensions constitute
a fundamental system of neighbourhoods of f .

Comment The most important feature of these topologies is that they give a way to
control the continue distance of the subextensions through the topological group corre-
sponding to these extensions. It it worth noticing that a fundamental open subset of this
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group contains a fundamental neighbourhood of the identity i.e. idL that is the subgroup
Gal[L : M ]. The topological generalization of the Galois correspondence provides the
extensions with the advantages of the topology. From two points of view. Firstly, it es-
tablishes a link with another domain of mathematics and its resources. Secondly and most
importantly, the topological view completes the correspondence by the dynamics of topol-
ogy. I will develop this feature below.

It is interesting to notice what the closure of a subset of Gal[Gal[L : K] consists in.
[BJ p. 43] Let K ⊆ L be a Galois extension of fields. Given a subset U ⊆ Gal[L : K] its
closure is given by

U =
{
f ∈ Gal[L : K]

∣∣∣∀MK ⊆M ⊆ LwithK ⊆ M finite dimensional Galois extension

∃g ∈ Ug|M = f |M
}

6.1 Classical infinitary Galois theory
The issue is to generalize the Galois theorem to the case of an arbitrary Galois extension
K ⊂ L, namely to the contravariant isomorphism of the Galois correspondence. By using
two propositions we can prove Galois theorem for arbitrary extension.

Proposition 1[BJ] p. 40
Let K ⊆M ⊆ L be a finite dimensional intermediate Galois extension. The canonical

restriction morphism

pM : Gal[L : K]→ Gal[M : K]; f 7→ f|M

is a topological quotient for the equivalence relation determined by the subgroup Gal[L :
M ] ⊆ Gal[L : K]

Proposition 2
Let K ⊆ L be an arbitrary Galois extension of fields. For every finite dimensional

intermediate extension K ⊆M ⊆ L

Gal[L : M ] = {f ∈ Gal[L : K]|∀m ∈Mf(m) = m}

is an open and closed subgroup of Gal[L : K].
In the proof of this proposition [BJ] uses elementary properties of topological groups

namely: every subgroup of a topological group containing an open subgroup is itself open,
and every open subgroup is closed.

And then the corollary
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Let K ⊆ L be an arbitrary Galois extension of fields. For every arbitrary intermediate
extension K ⊆M ⊆ L

We also need (BJ) the following lemma:
Let K ⊆ L an arbitrary Galois extension of fields and G ⊆ Gal[L : K] a closed

subgroup. Moreover let us suppose that

K = Fix(G) = {l ∈ L|∀g ∈ Gg(l) = l}

G = Gal[L : K]. Two features emerge from these topological properties of the subgroups.
The fact that the subgroup is closed allows to characterize the intermediate subextensions.
It brings out another feature of the Galois correspondence. Particularly the feature of
Fix(G) for G ⊆ Gal[L : K].

And we get the topological Galois theorem. Galois theorem Let K ⊆ L be an arbi-
trary Galois extension of fields. The correspondences

K ⊆M ⊆ L 7→ Gal[L : M ],

G ⊆ Gal[L : K] 7→ Fix(G)

induce a contravariant isomorphism between the lattice of arbitrary extensions K ⊆M ⊆
L and the lattice of closed subgroups G ⊆ Gal[L : K]

Comment We have here the third Galois theorem : it is established in the frame of
topological groups. The subgroups are closed subgroups and extensions are arbitrary ex-
tensions. We gain a topological meaning of Fix(G). Finally the topological contravari-
ance means that we are interested in the form of the distance of the inclusions and their
reverse. This form yields a supplementary unification frame. But this unification consists
in coming out of the algebraic properties. This point of view completes the classical initial
Galois theorem. And this classical infinitary Galois theorem can be seen as the element of
the main theory: Grothendieck infinitary Galois theory.

6.2 Infinitary Grothendieck Galois theory : the main element
An important element necessary to understand and to explain the Grothendieck theory is
the profinite topological spaces. I will give only some notions before coming to the main
theory. I recall the definitions given by [BJ].

7-2-1 Profinite topological spaces
Definition 1[BJ p. 47]
A topological space is profinite when it is the projective limit, indexed by a cofiltered

poset, of finite discrete topological spaces.
Definition 2
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A topological space is totally disconnected when two distinct points admit disjoint
neighborhoods which are both open and closed.

I give now three lemmas of [BJ] p. 48
Lemma 1
In the category of topological spaces and continuous mappings, a projective limit of

totally disconnected spaces is again totally disconnected.
I recall [BJ] that given a diagramD of topological spaces, its projective limit L is the

space

L = {(xX)X∈D ∈
∏
X∈D

X|∀f ∈ D, f : X → Y, f(xX) = xY }

Lemma 2
A projective limit of compact and totally disconnected spaces is again compact and

totally disconnected.
And we have this property:
Theorem
A topological space is profinite if and only if it is compact and totally disconnected.

with two corollaries
Corollary 1
A topological space is profinite when it homeomorphic to a projective limit of finite

discrete spaces.
Corollary
For a compact Hausdorff space X the following conditions are equivalent
(i) X is profinite
(ii) the topology of X has a basis constituted of clopens (simultaneously open and

closed subsets)
(iii) X is totally disconnected
Comment Some remarks about the definitions of a profinite space. This space and its

properties are constructed and introduced in order to compose the algebraic control and the
topology. Particularly through the property of compactness. The total disconnectedness
allows us to dispose as for classical topology the property of separation. The concept of
projective limit as subgroup of direct product contributes to this algebraic control. We
have to take into account the fact that one construct this limit by means of the projective
system associated. · · ·G2

α3 //α2 // G1
α1 // G0

where Gi are topological groups.
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6.3 Infinitary Galois theory of Grothendieck : the fourth theorem
We can consider that this theory represents the synthesis of the previous Galois theories.
The first generalization by the concept of K- algebra, and the second by extension to
arbitrary Galois extension will be concentrated and ”potentialized” in this third theory.

Definition
Let G be a topological group. A topological G-space is topological space provided

with a continuous action of G. A morphism of topological G− spaces is a continuous
morphism of G-sets. A topological G-space is profinite when it is a projective limit,
indexed by a cofiltered poset, of finite discrete topological spaces. Before going to the last
theorem, I will explain six lemmas [BJ P. 57 sq] gives.

Lemma 1
Let K be a field. Every algebraic K-algebra A is the set-theorical filtered union of its

finite subalgebras.
Lemma 2
Let K ⊆ L be a an arbitrary Galois extension of fields. For every K-algebra A which

is split by L there is a bijection

HomK(A,L) ∼= lim
B
HomK(B,L)

where the limit is cofiltered and indexed by the finite dimensional subalgebra B ⊆ L
Moreover, each HomK(B,L) is finite. In particular, the above limit formula provides
HomK(A,L) with the structure of a profinite space.

Comment Let us consider these lemmas.The first one interprets the concept of alge-
bras as a filtered union of its subalgebras: in this way it introduces the topology in the
structure of algebra. The second one provides HomK(A,L) with a structure of a profi-
nite space. This ”topologization” of all the Galois structure brings out a new structural
frame: the image by the functor HomK(−, L) is provided with a topological structure.
The construction added to the categorical meaning and in terms of algebra the topological
meaning.

Lemma 3
Let K ⊆ L be an arbitrary Galois extension of fields. For every K-algebra A which is

split by L, the map

µ : Gal[L : K]×HomK(A,L)→ HomK(A,L), (g, f) 7→ g ◦ f
is a continuous action of the topological group Gal[L : K] on the topological space
HomK(A,L), where these are provided with the profinite topologies we got.

The proof of lemma 2 uses the fact that the projection

pB : HomK(A,L) ∼= limBHomK(B,L)→ HomK(B,L)
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is continuous and a diagram that uses this projection. Indeed proving the continuity of the
group action reduces to proving that for every finite dimensional subalgebra B ⊆ B the
composite pB ◦ µ where µ is the action. The left vertical composite is continuous.
Gal[L : K]×HomK(A,L)

µ //

��

HomK(A,L)

Gal[M : K]×HomK(A,L)

��
Gal[M : K]×HomK(B,M)

It is important to set up the topology for the group action. At this step the action
of the topological Galois group is seen as continuous and is the way to give the Galois
framework topological meaning. This meaning is general because the topology is the
discrete topology.

For the lemme 3, we have to prove that for every finite subdimensional subalgebra
C ⊆ A the composite

HomK(B,L)
Γ(f)−→ HomK(A,L) = limCHomK(C,L)

pC−→ HomK(A,L)

is continuous. f(C) ⊆ B is a finite dimensional K-algebra.
Considering the following commutative diagram:

HomK(B,L)
Γ(f) //

pC

��

LHomK(A,L)

pC

��
HomK(f(C), L)

γ(f)
// HomK(C,L)

where (γ(f))(h)(c) = h(f(c)) for all c ∈ C. We get the result since all arrows are
continuous.

After this ”topologization”of the situation [BJ] shows how to achieve its reformulation
in terms of categories.

lemma 4
LetK be a field andA an algebraicK-algebra. Let us writeA = colimB where B runs

through the finite dimensional subalgebras of A. For every finite dimensional K-algebra
C, the canonical morphism

ρ : colimBHomK(C,B)
∼=−→ HomK(C,A)

is bijective. The commutativity of the colim with HomK(C,B) is an element of this new
situation.
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The last lemma before the theorem is categorical.
Lemma 5
LetG = limi∈Gi be a profinite group, expressed as a cofiltered projective limit of finite

discrete groups. Let us assume that the projections pi : G → Gi are surjective. We write
Gi−Setf for the category of finiteGi-sets andG−Topf for the category of discrete finite
topological G-spaces. For every index i ∈ I , there is a functor

γi : Gi − Setf → G− Topf , X 7→ X

where the G action on X is given by g.x = pi(g).x. This functor γi identifies GiSetf with
a full subcategory of G − Topf . Moreover the category G − Topf is the set theoretical
filtered union of the full subcategories Gi − Setf .

This functor is full and faithful. This lemma through the functor it describes says that
we get a dynamical unity between categories G−Setf and G−Topf . This unity has been
constructed on the basis of the action of profinite group.

Finally I can set out the last theorem that is according to [BJ] he Grothendieck Galois
theorem

Galois theorem
Let K ⊆ L be an arbitrary Galois extension of fields. We write SplitK(L) for the

category of K-algebras split by L and Gal[L : K]− Prof for the category of profinite
Gal[L : K]-spaces. The functor

Γ : SplitK(L) −→ Gal[L : K]− Prof , A 7→ HomK(A,L)

is a contravariant equivalence of category.
It is a synthesis of all previous theorem. I will comment on this synthesis.
The proof that Γ is full and faithful uses the results of previous lemmas. Let us consider

A,B ∈ SplitK(L). We know that

A = colimC,C ⊆ A; B = colimD,D ⊆ B

where the colimits are filtered and C,D run respectively through finite dimensional sub-
algebras of A and B. For each pair A,B we can choose finite dimensional extensions,
MC ,MD which split respectively C and D. We can even choose a finite dimensional
Galois extension MCD which splits both C and D and we get

K ⊆MC ⊆MCD ⊆ L, K ⊆MD ⊆MCD ⊆ L,

We also get

HomK(C,L) ∼= HomK(C,MCD), HomK(D,L) ∼= HomK(D,MCD)
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We have then, (BJ)

Hom(Γ(A),Γ(B)) ∼= Hom(HomK(A,L)HomK(B,L))

∼= Hom(HomK(colimCC,L)HomK(colimDD,L))

∼= Hom(limCHomK(C,L), limDHomK(D,L))

∼= limDHom(limCHomK(C,L), limDHomK(D,L))

∼= limDcolimCHom(HomK(C,L), HomK(D,L))

∼= limDcolimCHomK(HomK(C,MCD), HomK(D,MCD))

∼= limDcolimCHom(D,C) ∼= limDHom(D, colimC)

∼= Hom(colimD, colimC) ∼= Hom(B,A)

Let us remark that the Galois correspondence and the second Galois theorem (Grothendieck
generalization to algebras)is integrated in the proof through the role played by SplitK(L).
This isomorphism proves the full- and faithfulness of Γ.

The previous lemma applies in such a way that determines the functor Γ and allows
us to prove that it is essentially surjective. A profinite Gal[L : K]-space is a cofiltered
projective limit X ∼= limi∈IXi of finite discrete topological Gal[L : K]- spaces. Each Xi

is a finite Gal[Mi : K]-set for some finite dimensional Galois extension K ⊆Mi ⊆ L. BJ
uses here the functor γi.

γi : Gi − Setf → G− Topf , X 7→ X

And then he uses the Galois Grothendieck previous theorem (what is no topological).
Xi = HomK(Ci,Mi) for some finite dimensional K-algebra Ci which is split by Mi.
Moreover we observed that

Xi = HomK(Ci,Mi) ∼= HomK(C,L)

As noticed it is important to emphasize that the topology is introduced by means of cofil-
tered limit, which is suited to Galois extensions.

Given fij : Xi → Xj in the diagram ofX , the spaceXi is a finite discreteGal[Mi : K]-
space and the space Xj is a finite discrete Gal[Mj : K]-space. We can choose a finite
dimensional Galois extension K ⊆ M ⊂ L such that Mi ⊆ M and Mj ⊆ M and
this yelds Xi = HomK(Ci,M) and Xj = HomK(Cj,M), where Ci and Cj are finite
dimensional K-algebras split by L. The morphism : hij : Cj → Ci induces the morphism

Xi = HomK(Ci,M)→ HomK(Cj,M) = Xj

32



by applying the previous Galois Grothendieck. [BJ] constructed in this way a diagram
constituted by the Ci from the diagram constituted by the Xi. It suffices to put A =
colimi∈ICi, filtered colimit of algebras. One prove that L splits A.

And finally one has:

HomK(A,L) ∼= HomK(colimi∈ICi, L) ∼= limi∈IHomK(Ci, L) ∼= limi∈IXi
∼= X

7 Generalization in four steps
I recall the steps of generalization of the Galois theory. Let us take into account that we
have only a partial generalization. The next generalization is to replace the commutative
algebra over fields by the commutative algebras over connected commutative rings. I don’t
deal with this. But the generalizations I presented give us some precious philosophical
indications.

Ist step. Proposition Let K ⊆ L be a Galois field extension . The map

K ⊆M ⊆ L
Gal
$$

Fixee {G|G ⊆ Gal[L : M ]} constitute a Galois connection. IndeedGal
and Fix are contravariant functors between posets so the announced adjunction property
reduces to the trivial relations [BJ]

Fix(Gal(M)) = M ⊆ Fix(Gal[L : M ]), G ⊆ Gal(Fix(G))

IId step. Galois theorem Let K ⊆ L be a finite dimensional Galois extension of
fields. Let us write Gal[L : K] for the group of K-automorphims of L and Gal[L :
K]− Setf for the category of finite Gal[L : K]− sets. Let us also write SplitK(L)f for
the category of those finite dimensional K-algebras which are split by L. The functor on
SplitK(L)f represented by L factors through the category Gal[L : K]− Setf :

HomK(−, L) : SplitK(L)f −→ Gal[L : K]− Setf

A −→ HomK(A,L)

with Gal[L : K] acting by composition on HomK(−, L). This factorization functor is a
contravariant equivalence of categories.

IIId step. Galois theorem Let K ⊆ L be an arbitrary Galois extension of fields. The
correspondences

K ⊆M ⊆ L 7→ Gal[L : M ],

G ⊆ Gal[L : K] 7→ Fix(G)
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induce a contravariant isomorphism between the lattice of arbitrary extensions K ⊆M ⊆
L and the lattice of closed subgroups G ⊆ Gal[L : K]

IVth step. Galois theorem
Let K ⊆ L be an arbitrary Galois extension of fields. We write SplitK(L) for the

category of K-algebras split by L and Gal[L : K]− Prof for the category of profinite
Gal[L : K]-spaces. The functor

Γ : SplitK(L) −→ Gal[L : K]− Prof , A 7→ HomK(A,L)

is a contravariant equivalence of category. I have to add one remark regarding the gener-
alization: when one need to prove the validity of generalization one have necessarily to be
able to return to the starting point by means of a restriction. I give only one example.

The Grothendieck Galois theorem contains the classical Galois theorem. The con-
travariant equivalence of categories implies the existence of an isomorphism between the
lattice of subobjects

K �M � L

in SplitK(L)f and the lattice of quotients HomK(M,L).

Gal[L : K] ∼= HomK(L,L) � HomK(M,L) � HomK(K,L) ∼= {∗}

in GalL : K]− Setf . You have the Galois isomorphism.
This is not the end of the history. I have focused on generalization on algebraic-

topological Grothendieck Galois theory. There exists many other generalizations. (See
the schema). Particularly there is the extension of the Galois theory to Poincaré theory,
or to differential Galois theory. Grothendieck constructed the synthesis of these different
generalizations. The theory of Galois categories concerns characterizing those categories
equivalent to the category of finite sets on which a finite (or profinite) group acts. In
this theory lies the deepest meaning of the generalization. But I put forward a significant
movement of this generalization.

As for the new geometrical vision Grothendieck speaks about, it concerns through
the Galois correspondence the links, at different categorical levels, between Algebra and
Geometry or Topology Grothendieck invented. What is important is the fact that Galois
correspondence contains a geometrical significance. Galois group - even purely algebraic-
is full of geometry.

I would conclude in four points. Firstly, the generalization of Galois theory is based
on the concept of correspondence. This correspondence is an bijection (morphism functo-
rial) between different structures (categories) and reversed inclusion. This only pure form
supports the schema of the generalization. Secondly, the generalization proceeds from ons
side by deepening both sides of the correspondence, from the other side by rebuilding and
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enriching the morphism. Thirdly, the strengths of the generalization results from its func-
torial nature: as relation between structures considered as such this nature was since the
Galois formulation functorial. Fourthly, as for the nature of the mathematical structures
concerned, the ontology consists in a extension power (synthetic) of the structures we have
to deal with. And the the theory is strong, the more it brings out explicitly this feature.
For this reason Galois theory is first of all - through the category theory- a theory of the
extension of mathematics.
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